Unitary moduli schemes: smooth case

Pol van Hoften
pol.van_hoften@kcl.ac.uk

February 10, 2020

1 Introduction

We will start by discussing a 'baby version' of section 4 of [2], and hope that this will provide some intuition for what in the paper. Let E / \mathbb{Q} be a quadratic imaginary field, let V / E be an hermitian space of rank 5 with signature $(1,4)$ and let $G U(V)$ be the associated unitary similitude group. Furthermore let $p>2$ be a prime inert in E and let $K^{p} \subset G U(V)$ be a neat compact open subgroup. We will consider the functor $\mathbf{M}=\mathbf{M}\left(V, K^{p}\right)$ which associates to $S / \mathbb{Z}_{(p)}$ equivalence classes of triples $\left(A, \lambda, \eta^{p}\right)$, where

- (A, λ) is a unitary \mathcal{O}_{E} abelian scheme over S of signature type $(1,4)$ and λ is a prime-to- p polarisation;
- η^{p} is a K^{p} level structure (which is something that we will be vague about throughout this talk)

Proposition 1.0.1. The functor \mathbf{M} is representable by a scheme \mathbf{M} and the structure map $\mathbf{M} \rightarrow \operatorname{Spec} \mathbb{Z}_{(p)}$ is quasiprojective and smooth of relative dimension 4.

Vollaard and Wedhorn [3] studied the basic locus of this Shimura variety (with 5 replaced by arbitrary n) and proved the following result:

Theorem 1.0.2 (Theorem 5.2 of [3|). Assume that K^{p} is sufficiently small, then the irreducible components of the basic locus $\mathbf{M}_{\mathbb{F}_{p}}^{b}$ are isomorphic to a certain Deligne-Lusztig variety $D L(W)$, which is an irreducible smooth projective variety.

- Moreover, the set of irreducible components of the basic locus is in bijection with the adelic double coset

$$
I(\mathbb{Q}) \backslash I\left(\mathbb{A}^{\infty}\right) / K,
$$

where I / \mathbb{Q} is the unique inner form of G such that $G\left(\mathbb{A}^{\infty}\right) \simeq I\left(\mathbb{A}^{\infty}\right)$ and such that $I(\mathbb{R})$ is compact mod centre.

- Two irreducible components X_{1} and X_{2} are either disjoint, intersect in a point or intersect in a smooth curve $C \subset D L(W)$. This intersection behaviour is governed by the Bruhat-Tits tree of
$I_{\mathbb{Q}_{p}}=J_{b}$, in particular the correspondences

$$
\begin{aligned}
& T_{2}: X \mapsto \sum_{Y \mid X \cap Y=\{p t\}} Y \\
& T_{1}: X \mapsto \sum_{Y \mid X \cap Y=C} Y
\end{aligned}
$$

on $I(\mathbb{Q}) \backslash I\left(\mathbb{A}^{\infty}\right) / K$ can be identified with 'natural' Hecke operators T_{1}, T_{2} in the spherical hecke algebra of I.

Remark 1.0.3. This means that the natural map

$$
\beta: \mathbb{Q}_{\ell}\left[I(\mathbb{Q}) \backslash I\left(\mathbb{A}^{\infty}\right) / K\right] \simeq H_{4}^{\mathrm{BM}}\left(\mathbf{M}_{\overline{\mathbb{F}}_{p}}^{\mathrm{b}}, \mathbb{Q}_{\ell}\right) \rightarrow H_{c}^{4}\left(\mathbf{M}_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\ell}\right) \rightarrow H_{c}^{4}\left(\mathbf{M}_{\overline{\mathbb{F}}_{p}}^{\mathrm{b}}, \mathbb{Q}_{\ell}\right) \simeq \mathbb{Q}_{\ell}\left[I(\mathbb{Q}) \backslash I\left(\mathbb{A}^{\infty}\right) / K\right]
$$

is a linear combination

$$
\sum_{\delta=0}^{2} \mathbf{d}_{2-\delta} \cdot T_{i}
$$

with the coefficients given by intersection numbers (it turns out the the intersection numbers between X and Y only depend on the codimension of $X \cap Y$ and not on the actual choice of components X and Y, this uses the excess intersection formula and some deformation theory). Here T_{0} is the identity and its coefficient will be the self-intersection of components X in $\mathbf{M}_{\overline{\mathbb{F}}_{p}}$.

Remark 1.0.4. The main theorem of [4] also tells us what β is, but now on the other side of the Satake correspondence. To be precise, they interpret the spherical Hecke algebra as global functions on the stack

$$
\left[\frac{\hat{G} \sigma}{\operatorname{Ad} \hat{G}}\right]
$$

of unramified Langlands parameters and write α (up to a scalar) as a product of

$$
\prod_{\chi \in \Phi_{\mathrm{rel}}^{\vee}}\left(e^{\chi} \pm 1\right)
$$

of certain cocharacters of \hat{S}, where S is a maximal split torus of G. This is what allows them to say for what kind of (spherical) representations π_{p} of $G\left(\mathbb{Q}_{p}\right)$ the map β is nonzero, in terms of the Langlands parameter of π_{p}. In particular, they prove that it suffices to show that the Langlands parameter, which is just a conjugacy class of elements in $\hat{G}\left(\overline{\mathbb{Q}_{\ell}}\right)$, is regular semi-simple. It is possible to translate from this point of view to the previous by doing lots of combinatorics (appendix B of $[2]$) and we then find [I probably made some mistakes doing this computation]

$$
\begin{aligned}
& \mathbf{d}_{0}=p^{6}+2 p^{5}-p^{4}+p^{3}-p^{2}-p+1 \\
& \mathbf{d}_{1}=p^{3}-4 p^{2}+p \\
& \mathbf{d}_{2}=1
\end{aligned}
$$

Remark 1.0.5. The proof in [3] proceeds by studying the Rapoport-Zink space that uniformises $\mathbf{M}_{\mathbb{F}_{p}}$, which has the disadvantage that one does not use the description of $I(\mathbb{Q}) \backslash I\left(\mathbb{A}^{\infty}\right) / K$ as a moduli space. The authors of 22 proceed by giving a moduli description of $I(\mathbb{Q}) \backslash I\left(\mathbb{A}^{\infty}\right) / K$ and then writing down a moduli theoretic correspondence

THey then identify the right arrow with the normalisation map and the fibers of the left arrow with Deligne-Lusztig varieties. This is also the perspective taken in [1], which treats a slightly different case. This makes it easier to compute normal bundles/tangent bundles which is necessary to use the excess intersection formula.

2 Unitary Moduli schemes

In this section, we will follow Section 4 of [2] and construct the analogues of the objects from the introduction. We start by fixing

2.1 Notation

- a CM extension F / F^{+};
- a CM type Φ containing τ_{∞};
- a special inert prime \mathfrak{p} of F^{+};
- A rational skew-hermitian space W_{0} over $\mathcal{O}_{F} \otimes \mathbb{Z}_{(p)}$ with similitude group T_{0};
- a neat open compact subgroup $K_{0}^{p} \subset T_{0}\left(\mathbb{A}^{\infty, p}\right)$;
- A totally positive element $\varpi \in \mathcal{O}_{F^{+}}$with \mathfrak{p}-adic valuation one and \mathfrak{q}-adic valuation zero for all $\mathfrak{p} \neq \mathfrak{q} \mid p ;$
- A standard indefinite hermitian space V over F of rank $N \geq 1$
- For every prime $\mathfrak{q} \mid p$, a self dual lattice $\Lambda_{\mathfrak{q}}$ in $V \otimes_{F} F_{\mathfrak{q}}$ [This is basically the same thing as a choice of hyperspecial subgroup of $U(V)\left(\mathbb{Q}_{p}\right)$, and these don't always exist when N is even]

2.2 A unitary moduli scheme

Recall that we have a finite étale scheme $\mathbf{T}_{\mathfrak{p}} / \mathbb{Z}_{p}^{\Phi}$ with an action of the abelian group

$$
T_{0}\left(\mathbb{A}^{\infty, p}\right) / T_{0}\left(\mathbb{Z}_{(p)}\right) K_{0}^{p}
$$

The S-points $\mathbf{T}_{\mathfrak{p}}(S)$ have a moduli description as equivalence classes of triples $\left(A_{0}, \lambda_{0}, \eta_{0}^{p}\right)$ where A_{0} is a unitary \mathcal{O}_{F}-abelian scheme of signature type Φ, where λ_{0} is a prime-to- p polarisation and where η_{0}^{p} is a K_{0}^{p} level structure. All the moduli schemes that we define in this section will live over $\mathbf{T}_{\mathfrak{p}}$.

Definition 2.2.1. Consider the moduli functor $\mathbf{M}_{\mathfrak{p}}=\mathbf{M}_{\mathfrak{p}}\left(V, K^{p}\right)$, for a fixed neat open compact subgroup $K^{P} \subset U(V)\left(\mathbb{A}^{\infty, p}\right)$, such that $\mathbf{M}_{\mathfrak{p}}(S)$ is the set of equivalence classes of sextuples

$$
\left(A_{0}, \lambda_{0}, \eta_{0}^{p} ; A, \lambda, \eta^{p}\right)
$$

where

- $\left(A_{0}, \lambda_{0}, \eta_{0}^{p}\right) \in \mathbf{T}_{\mathfrak{p}}(S)$
- (A, λ) is a unitary \mathcal{O}_{F} abelian scheme of signature type $N \Phi-\tau_{\infty}+\tau_{\infty}^{c}$ over S with λ a prime-to-p polarisation
- η^{p} is a K^{p}-level structure, which is something like a K^{p} orbit of morphisms

$$
V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty, p} \rightarrow \operatorname{Hom}_{F \otimes_{\mathbb{Q}^{\infty}} \infty, p}^{\lambda_{0}, \lambda}\left(H_{1}^{e ́ t}\left(A_{0}, \mathbb{A}^{\infty, p}\right), H_{1}^{e ́ t}\left(A, \mathbb{A}^{\infty, p}\right)\right.
$$

Remark 2.2.2. In [2], the authors consider the objects $\mathbf{M}_{\mathfrak{p}}(V,-)$ as functors from

$$
\mathfrak{k}(V)^{p} \times \mathfrak{T} \rightarrow \mathrm{Sch}_{/ \mathbb{Z}_{p}^{\Phi}}^{\prime}
$$

essentially it says that all our constructions are compatible with changing the prime-to- p level (and that there are Hecke operators) and acting by the abelian group $T_{0}\left(\mathbb{A}^{\infty, p}\right) / T_{0}\left(\mathbb{Z}_{(p)}\right) K_{0}^{p}$, we refer to loc. cit. for the details

Remark 2.2.3. We are purposely omitting details regarding the equivalence relation on the sextuples and also the detailed definition of prime-to- p level structures, we refer to $[2]$ for the details.

Theorem 2.2.4 (Thm 4.13 of $[2]$). The morphism $\mathbf{M}_{\mathfrak{p}} \rightarrow \mathbf{T}_{\mathfrak{p}}$ is representable by quasi-projective smooth schemes of relative dimension $\vec{N}-1$, the morphism is projective if and only its generic fiber is. The relative tangent sheaf is given by

$$
\operatorname{Hom}\left(\omega_{\mathcal{A}^{t}, \tau_{\infty}},(\operatorname{Lie} A)_{\tau_{\infty}}\right)
$$

Moreover, there is an isomorphism

$$
\mathbf{M}_{\mathfrak{p}}^{\eta} \simeq \operatorname{Sh}(V) \times_{\operatorname{Spec} F} \mathbf{T}_{\mathfrak{p}}^{\eta}
$$

Remark 2.2.5. The Shimura variety $\operatorname{Sh}(V)$ is not of PEL type, so we cannot expect a moduli description without the 'extra torus part' provided by $\mathbf{T}_{\mathfrak{p}}$.

2.3 Basic correspondence

In this section, we will define a moduli interpretation $\mathbf{S}_{\mathfrak{p}}$ of the Shimura set that parametrises the irreducible components of the basic locus of $\mathbf{M}_{\mathfrak{p}}$. Using this, we will define a moduli theoretic correspondence

and show that the left hand morphism can be identified with the normalisation of $\mathbf{M}_{\mathfrak{p}}^{\text {basic }}$ and the right hand morphism is surjective with geometric fibers isomorphic to certain Deligne-Lusztig varieties.

Definition 2.3.1. We define $\mathbf{S}_{\mathfrak{p}}=\mathbf{S}_{\mathfrak{p}}\left(V, K^{p}\right)$ to be the moduli functor whose S points $\mathbf{S}_{\mathfrak{p}}(S)$ is the set of equivalence classes of sextuples

$$
\left(A_{0}, \lambda_{0}, \eta_{0}^{p} ; A^{\star}, \lambda^{\star}, \eta^{p \star}\right)
$$

where

- $\left(A_{0}, \lambda_{0}, \eta_{0}^{p}\right) \in \mathbf{T}_{\mathfrak{p}}(S) ;$
- $\left(A^{\star}, \lambda^{\star}\right)$ is a unitary \mathcal{O}_{F} abelian scheme of signature type $N \Phi$ over S such that $\operatorname{ker} \lambda^{\star}\left[p^{\infty}\right]$ is trivial if N is odd and contained in $A^{\star}[\mathfrak{p}]$ of rank p^{2} if N is even;
- $\eta^{p \star}$ is a K^{p} level structure, which is something like a K^{p} orbit of morphisms

$$
\eta^{p \star}: V \otimes_{\mathbb{Q}}^{\infty, p} \rightarrow \operatorname{Hom}_{F \otimes \mathbb{Q}^{A} \mathbb{A}^{\infty}, p}^{\varpi \lambda_{0}, \lambda^{\star}}\left(H_{1}^{\dot{\epsilon} t}\left(A_{0}, \mathbb{A}^{\infty, p}\right), H_{1}^{\dot{e} t}\left(A, \mathbb{A}^{\infty, p}\right) .\right.
$$

Remark 2.3.2. The level structure at \mathfrak{p} of this 'Shimura variety' really corresponds to a lattice $\Lambda \subset V \otimes_{F} F_{\mathfrak{p}}$ such that

$$
p \Lambda \subset \Lambda^{\vee}
$$

of index 0 (if N is odd) or index p^{2} if N is even [this is what comes out of the Vollaard-Wedhorn construction], hence why we take level structures with respect to $\varpi \lambda_{0}$.

Proposition 2.3.3. The morphism $\mathbf{S}_{\mathfrak{p}} \rightarrow \mathbf{T}_{\mathfrak{p}}$ is represented by finite étale schemes.
Definition 2.3.4. We define $\mathbf{B}_{\mathfrak{p}}=\mathbf{B}_{\mathfrak{p}}\left(V, K^{p}\right)$ to be the moduli functor whose S points $\mathbf{S}_{\mathfrak{p}}(S)$ is the set of equivalence classes of tuples

$$
\left(A_{0}, \lambda_{0}, \eta_{0}^{p} ; A, \lambda, \eta^{p} ; A^{\star}, \lambda^{\star}, \eta^{p \star} ; \alpha\right),
$$

where

- $\left(A_{0}, \lambda_{0}, \eta_{0}^{p} ; A, \lambda, \eta^{p}\right) \in \mathbf{M}_{\mathfrak{p}}(S)$
- $\left(A_{0}, \lambda_{0}, \eta_{0}^{p} ; A^{\star}, \lambda^{\star}, \eta^{p \star}\right) \in \mathbf{S}_{\mathfrak{p}}(S)$.
- $\alpha: A \rightarrow A^{\star}$ is an \mathcal{O}_{F}-linear quasi-isogeny such that
$-\operatorname{ker} \alpha\left[p^{\infty}\right] \subset A[\mathfrak{p}]$
$-\varpi \lambda=\alpha^{\vee} \circ \lambda^{\star} \circ \alpha$
- α preserves K^{p} level structures

Remark 2.3.5. There is an obvious correspondence as in (1) by the first two conditions. Note that the condition $\varpi \lambda=\alpha^{\vee} \circ \lambda^{\star} \circ \alpha$ implies that $\operatorname{ker} \alpha\left[p^{\infty}\right] \subset A[\mathfrak{p}]$ is an isotropic subspace for the Weil pairing that satisfies

$$
\left.\operatorname{rk}\left(\operatorname{ker} \alpha\left[p^{\infty}\right]\right)^{\perp} /\left(\operatorname{ker} \alpha\left[p^{\infty}\right]\right)\right) \simeq \begin{cases}0 & \text { if } N \text { odd } \\ p^{2} & \text { if } N \text { even }\end{cases}
$$

2.3.6 Linear algebraic description of the fibers

The idea is now that the fiber $\mathbf{B}_{s^{\star}}$ of $\mathbf{B}_{\mathfrak{p}} \rightarrow \mathbf{S}_{\mathfrak{p}}$ over a point $s^{*}=\left(A^{\star}, \lambda^{\star}\right) \in \mathbf{S}_{\mathfrak{p}}(k)$ should have a linear algebraic description. For this we consider

$$
\mathcal{V}_{s^{\star}}:=H_{1}^{\mathrm{dR}}\left(A^{*} / k\right)_{\tau_{\infty}}
$$

which we equip with the pairing

$$
\{,\}_{s^{\star}}: \mathcal{V}_{s^{\star}} \times \mathcal{V}_{s^{\star}} \rightarrow k
$$

defined by $\{,\}_{s^{\star}}(x, y)=\langle F x, y\rangle_{\lambda^{\star}}$ where

$$
F: H_{1}^{\mathrm{dR}}\left(A^{*} / k\right)_{\tau_{\infty}} \rightarrow H_{1}^{\mathrm{dR}}\left(A^{*} / k\right)_{\tau_{\infty}^{c}}
$$

and where $\langle,\rangle_{\lambda^{\star}}$ is the pairing

$$
H_{1}^{\mathrm{dR}}\left(A^{*} / k\right)_{\tau_{\infty}^{c}} \times H_{1}^{\mathrm{dR}}\left(A^{*} / k\right)_{\tau_{\infty}} \rightarrow k
$$

induced by λ^{\star}. Given (A, λ) and an isogeny

$$
\alpha: A \rightarrow A^{\star}
$$

with dual isogeny $\beta: A^{\star} \rightarrow A$ satisfying $\beta \circ \alpha=\varpi$, we consider the subspace

$$
H=\beta_{*, \tau_{\infty}}^{-1}\left(\omega_{A^{\vee}, \tau_{\infty}}\right) \subset H_{1}^{\mathrm{dR}}\left(A^{\star}\right)_{\tau_{\infty}},
$$

where

$$
\beta_{*, \tau}: H_{1}^{\mathrm{dR}}\left(A^{\star}\right)_{\tau_{\infty}} \rightarrow H_{1}^{\mathrm{dR}}(A)_{\tau_{\infty}}
$$

is the induced map on de-Rham homology. The main idea of everything that will happen next, is that the subspace H will uniquely determine β and therefore α. Therefore, the fiber $\mathbf{B}_{s^{\star}}$ will be contained in some sort of flag variety, and so we need to determine its image.

Lemma 2.3.7. The subspace $H \subset \mathcal{V}_{s^{*}}$ satisfies

$$
H^{\perp} \subset H
$$

where H^{\perp} is the right-orthogonal complement of H under $\{,\}_{s^{\star}}$. Moreover H has rank $\left\lceil\frac{N+1}{2}\right\rceil$.
Proof. Omitted, the proof in [2] is derived from Lemma 3.4.13 of op.cit. which mostly uses Dieudonné theory.

Proposition 2.3.8 (Proposition A.1.3 of [2]). There is a smooth projective geometrically connected scheme $D L_{s^{\star}} / k$ of dimension $\left\lfloor\frac{N-1}{2}\right\rfloor$ such that $D L_{s^{\star}}(S)$ parametrises rank $\left\lceil\frac{N+1}{2}\right\rceil$ sub-bundles $H \subset$ $\mathcal{V}_{s^{\star}} \otimes_{k} \mathcal{O}_{S}$ such that $H^{\perp} \subset H$. Its tangent bundle is given by

$$
\operatorname{Hom}\left(\mathcal{H} / \mathcal{H}^{\perp}, \mathcal{V}_{D L_{s^{\star}}} / \mathcal{H}\right) .
$$

Proof. The argument for representability is standard and shows that our variety is a closed subscheme of some Grassmannian, hence projective. If $R \rightarrow R_{0}$ is a surjection of artinian local rings with kernel I satisfying $I^{2}=0$ and $H_{0} \in D L_{s^{*}}\left(R_{0}\right)$ then we can a lift $H \in D L_{s^{*}}(R)$ as follows:

- We first lift H_{0} to an arbitrary subspace $H^{\prime} \subset \mathcal{V}_{R}$ using smoothness of Grassmannians.
- We then note that since $I^{p}=0$, the orthogonal complement $K=H^{\perp \perp}$ does not depend on the choice of lift of H^{\prime} (because $H^{\prime \perp}$ depends only on $H^{\prime(p)}$ which does not depend on the choice of H^{\prime});
- We are now free to choose a lift H of H_{0} such that $K \subset H$, by the smoothness of $\mathbb{P}\left(\mathcal{V} / H^{\perp}\right)$.

As a corollary we get the description of the tangent bundle from the theorem
Theorem 2.3.9 (Theorem 4.2.5 of [2]). The fibers $B_{s^{\star}}$ of $\mathbf{B}_{\mathfrak{p}} \rightarrow \mathbf{S}_{\mathfrak{p}}$ are isomorphic to $D L_{s^{\star}}$ with morphism described on k points as above. The morphism $B_{s^{\star}} \rightarrow \mathbf{B}_{\mathfrak{p}} \rightarrow \mathbf{M}_{\mathfrak{p}}$ is a closed immersion of pure codimension $\left\lfloor\frac{N}{2}\right\rfloor$ when K^{p} is sufficiently small with normal bundle

$$
\operatorname{Hom}\left(\omega_{A^{\vee}, \tau_{\infty}}, \operatorname{im}_{\alpha_{*}, \tau_{\infty}}\right)
$$

Remark 2.3.10. It should follow as in [3] that the the map $\mathbf{B}_{\mathfrak{p}} \rightarrow \mathbf{M}_{\mathfrak{p}}$ surjects onto the basic locus, but as far as I can tell this is never made explicit in [2]. [The fact that the map lands in the basic locus follows from the signature condition on \mathbf{S}_{p}.]

2.4 Uniformisation data

We are now going to relate $\mathbf{S}_{\mathfrak{p}}$, to a Shimura set for a definite inner form I of $U(V)$.
Definition 2.4.1. A definite uniformisation datum for V at \mathfrak{p} is a collection $V^{\star}, i,\left\{\lambda_{q^{\star}}\right\}_{q_{\mid p}}$) where

- V^{\star} is a standard definite hermitian space over F of rank N;
- $i: V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty, p} \rightarrow V^{*} \otimes_{\mathbb{Q}} \mathbb{A}^{\infty, p}$ is an isometry;
- for every prime $\mathfrak{p} \neq \mathfrak{q}$ of F^{+}above p, a self dual lattice $\Lambda_{\mathfrak{q}}^{\star}$;
- A lattice $\Lambda_{\mathfrak{p}}^{\star}$ such that

$$
p \Lambda_{\mathfrak{p}}^{\star} \subset\left(\Lambda_{\mathfrak{p}}^{\star}\right)^{\vee}
$$

of index 0 when N is odd and of index p^{2} when N is even.
Remark 2.4.2. Such definite uniformisation data should always exist (by some kind of Hasse principle?)
Proposition 2.4.3. There is an isomorphism

$$
\mathbf{S}_{\mathfrak{p}}\left(\overline{\mathbb{F}}_{p}\right) \simeq \operatorname{Sh}\left(V^{\star}, K_{p}^{\star}\right) \times \mathbf{T}_{\mathfrak{p}}\left(\overline{\mathbb{F}}_{p}\right) .
$$

2.5 Tate cycles

Suppose that $n=2 r+1$ is odd, then we consider the natural maps

$$
\begin{array}{r}
\operatorname{inc}_{!}^{\star}: \mathbb{Q}_{\ell}\left[\operatorname{Sh}\left(V^{\star}, K_{p}^{\star}\right)\right] \simeq H_{\mathfrak{T}}^{0}\left(\mathbf{S}_{\mathfrak{p}}, \mathbb{Q}_{\ell}\right) \simeq H_{\mathfrak{T}}^{0}\left(\mathbf{B}_{\mathfrak{p}}, \mathbb{Q}_{\ell}\right) \rightarrow H_{\mathfrak{T}}^{2 r}\left(\mathbf{M}_{\mathfrak{p}}, \mathbb{Q}_{\ell}(r)\right) \\
\left.\operatorname{inc}_{\star}^{*}: H_{\mathfrak{T}}^{2 r}\left(\mathbf{M}_{\mathfrak{p}}, \mathbb{Q}_{\ell}(r)\right) \rightarrow H_{\mathfrak{T}}^{2 r}\left(\mathbf{B}_{\mathfrak{p}}, \mathbb{Q}_{\ell}(r)\right) \simeq H_{\Sigma}^{0}\left(\mathbf{S}_{\mathfrak{p}}, \mathbb{Q}_{\ell}(r)\right)\right) \simeq \mathbb{Q}_{\ell}\left[\operatorname{Sh}\left(V^{\star}, K_{p}^{\star}\right)\right]
\end{array}
$$

Theorem 2.5.1 (Theorem 4.3.10 of [2]). Suppose that $N=2 r+1$ is odd. Then the composition

$$
\text { inc }_{\star}^{*} \circ \text { inc! }
$$

is equal to the Hecke operator

$$
\mathbf{T}_{N, \mathfrak{p}}^{\star}=\sum_{\delta=0}^{r} \mathbf{d}_{r-\delta, p} \cdot \mathbf{T}_{N, \mathfrak{p}, \delta} .
$$

Here $\mathbf{T}_{N, \mathfrak{p}, \delta}$ are certain 'standard Hecke operators' defined in appendix B and $\mathbf{d}_{r-\delta, p}$ are integers defined in Section 1.3 (they are basically polynomials in p).

Proof. The paper [2] cites Theorem 9.3.5 of [4], which does not exist (as of 10-2-2020). However, it seems that that it does follow from Section 7.4 of [4], which is the computation of the intersection matrix of cycle classes of the basic locus, and the combinatorics in appendix B of [2]. Unfortunately, some of the proofs in Appendix B also refer to Section 9 of [4].

3 Functoriality and special morphisms

The reason (I think) that we are considering such 'weird' moduli problems, is because there is a natural map (which wouldn't be there if we just considered the usual PEL type unitary Shimura varieties)

$$
\mathbf{m}_{\uparrow}: \mathbf{M}_{\mathfrak{p}}\left(V_{n}\right) \rightarrow \mathbf{M}_{\mathfrak{p}}\left(V_{n+1}\right)\left(A_{0}, \lambda_{0}, \eta_{0}^{p} ; A, \lambda, \eta^{p}\right) \rightarrow\left(A_{0}, \lambda_{0}, \eta_{0}^{p} ; A \times A_{0}, \lambda \times \lambda_{0}, \eta^{p} \oplus 1\right),
$$

where now V_{n}, V_{n+1} are standard indefinite hermitian spaces of rank $n, n+1$ respectively. We are going to show that all constructions of the previous section are compatible with this, constructing a commutative diagram:

Definition 3.0.1. We define $\mathbf{S}_{\mathfrak{p}}\left(V_{n}\right)_{s p}=\mathbf{S}_{\mathfrak{p}}\left(V_{n}, K^{p}\right)_{s p}$ to be the functor whose S points is the set of of equivalence classes of tuples

$$
\left(A_{0}, \lambda_{0}, \eta_{0}^{p} ; A^{\star}, \lambda^{\star}, \eta^{p \star} ; A_{\natural}^{\star}, \lambda_{\natural}^{\star}, \eta_{\natural}^{p \star} ; \delta^{\star}\right),
$$

where

- $\left(A_{0}, \lambda_{0}, \eta_{0}^{p} ; A^{\star}, \lambda^{\star}, \eta^{p \star}\right) \in \mathbf{S}_{\mathfrak{p}}\left(V_{n}\right)(S)$;
- $\left(A_{0}, \lambda_{0}, \eta_{0}^{p} ; A_{\text {घ }}^{\star}, \lambda_{\text {घ }}^{\star}, \eta_{\text {百 }}^{p \star}\right) \in \mathbf{S}_{\mathfrak{p}}\left(V_{n+1}\right)(S)$;
- $\delta^{\star}: A^{\star} \times A_{0} \rightarrow A_{\natural}^{\star}$ is an \mathcal{O}_{F}-linear quasi p-isogeny such that

1. $\operatorname{ker} \delta^{\star}\left[p^{\infty}\right] \subset\left(A^{\star} \times A[\mathfrak{p}]\right)$;
2. $\lambda^{\star} \times \varpi \lambda_{0}=\delta^{\star \vee} \circ \lambda_{\square}^{\star} \circ \delta^{\star}$;
3. δ^{\star} is compatible with the K^{p} level structures.

Lemma 3.0.2. The forgetful map

$$
\mathbf{S}_{\mathfrak{p}}\left(V_{n}\right)_{s p} \rightarrow \mathbf{S}_{\mathfrak{p}}\left(V_{n+1}\right)
$$

is an isomorphism when n is odd and finite etale of degree $p+1$ when n is even.
Definition 3.0.3. We now define $\mathbf{B}_{\mathfrak{p}}\left(V_{n}\right)_{\text {sp }}$ by the following Cartesian diagram:

One can now check that there is indeed a morphism $\mathbf{B}_{\mathfrak{p}}\left(V_{n}\right)_{\mathrm{sp}} \rightarrow \mathbf{B}_{\mathfrak{p}}\left(V_{n+1}\right)$ making (2) commute.

References

[1] David Helm, Yichao Tian, and Liang Xiao, Tate cycles on some unitary Shimura varieties mod, Algebra Number Theory 11 (2017), no. 10, 2213-2288. MR3744356
[2] Yifeng Liu, Yichao Tian, Liang Xiao, Wei Zhang, and Xinwen Zhu, On the Beilinson-Bloch-Kato conjecture for RankinSelberg motives, arXiv e-prints (2019Dec), arXiv:1912.11942, available at 1912.11942
[3] Inken Vollaard and Torsten Wedhorn, The supersingular locus of the Shimura variety of $\mathrm{GU}(1, n-1)$ II, Invent. Math. 184 (2011), no. 3, 591-627. MR2800696
[4] Liang Xiao and Xinwen Zhu, Cycles on Shimura varieties via geometric Satake, arXiv e-prints (2017Jul), arXiv:1707.05700, available at 1707.05700

