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1 Introduction

We will start by discussing a ‘baby version’ of section 4 of [2], and hope that this will provide some
intuition for what in the paper. Let E/Q be a quadratic imaginary field, let V/E be an hermitian space
of rank 5 with signature (1,4) and let GU(V') be the associated unitary similitude group. Furthermore
let p > 2 be a prime inert in E and let K C GU(V') be a neat compact open subgroup. We will consider
the functor M = M(V, KP) which associates to S/Z,) equivalence classes of triples (A4, A, 7”), where

e (A, )\) is a unitary Op abelian scheme over S of signature type (1,4) and A is a prime-to-p polari-
sation;

e 7P is a K level structure (which is something that we will be vague about throughout this talk)
Proposition 1.0.1. The functor M s representable by a scheme M and the structure map M — Spec Z,)
18 quasiprojective and smooth of relative dimension 4.

Vollaard and Wedhorn [3] studied the basic locus of this Shimura variety (with 5 replaced by arbitrary

n) and proved the following result:

Theorem 1.0.2 (Theorem 5.2 of [3]). Assume that KP is sufficiently small, then the irreducible com-
ponents of the basic locus M% are isomorphic to a certain Deligne-Lusztig variety DL(W'), which is an

P
wrreducible smooth projective variety.

o Moreover, the set of irreducible components of the basic locus is in bijection with the adelic double

coset

IQN\I(A™)/K,
where 1/Q is the unique inner form of G such that G(A*) ~ I(A*) and such that I(R) is compact
mod centre.

o Two irreducible components X1 and Xo are either disjoint, intersect in a point or intersect in a
smooth curve C C DL(W). This intersection behaviour is governed by the Bruhat-Tits tree of



Ig, = Jp, in particular the correspondences
T:X— > Y
Y|XNY={pt}
Ti: X Y Y

Y|XnY=C

on I(Q)\I(A>®)/K can be identified with ‘natural’ Hecke operators T1,T» in the spherical hecke
algebra of 1.

Remark 1.0.3. This means that the natural map
B QuII(Q\(A%)/K] ~ HPM (Mg, Qo) — H; (Mg, Qq) — HZ (Mg Q) ~ QuI(Q\I(A%)/K]

is a linear combination

2
Z dos-T;
5=0

with the coefficients given by intersection numbers (it turns out the the intersection numbers between X
and Y only depend on the codimension of X NY and not on the actual choice of components X and Y,
this uses the excess intersection formula and some deformation theory). Here Tj is the identity and its
coefficient will be the self-intersection of components X in Mﬁp.

Remark 1.0.4. The main theorem of [4] also tells us what 3 is, but now on the other side of the Satake
correspondence. To be precise, they interpret the spherical Hecke algebra as global functions on the stack

Go
AdG

of unramified Langlands parameters and write « (up to a scalar) as a product of

IT (ex+1)

XEP )

of certain cocharacters of S , where S is a maximal split torus of G. This is what allows them to say for
what kind of (spherical) representations m, of G(Q,) the map /3 is nonzero, in terms of the Langlands
parameter of m,. In particular, they prove that it suffices to show that the Langlands parameter,which
is just a conjugacy class of elements in G(@), is regular semi-simple. It is possible to translate from
this point of view to the previous by doing lots of combinatorics (appendix B of [2]) and we then find [I
probably made some mistakes doing this computation]

do=p°+2p° —p*+p*—p* —p+1
di =p* —4p*+p
dy = 1.



Remark 1.0.5. The proof in [3] proceeds by studying the Rapoport-Zink space that uniformises M'D

which has the disadvantage that one does not use the description of I(Q)\7(A*)/K as a moduli space
The authors of [2] proceed by giving a moduli description of I(Q)\/(A*>°)/K and then writing down a

moduli theoretic correspondence

HQN\(A™)/K

P

THey then identify the right arrow with the normalisation map and the fibers of the left arrow with
Deligne-Lusztig varieties. This is also the perspective taken in [1], which treats a slightly different case.
This makes it easier to compute normal bundles/tangent bundles which is necessary to use the excess
intersection formula.

2 Unitary Moduli schemes

In this section, we will follow Section 4 of [2] and construct the analogues of the objects from the intro-
duction. We start by fixing
2.1 Notation

e a CM extension F)/F*;

e a CM type @ containing 7eo;

e a special inert prime p of F'T;

A rational skew-hermitian space Wy over O ® Z;,) with similitude group To;

e a neat open compact subgroup K{ C Tp(A%P);

A totally positive element w € Op+ with p-adic valuation one and g-adic valuation zero for all

p#qlp;
A standard indefinite hermitian space V over F' of rank N > 1

e For every prime q | p, a self dual lattice Aq in V ®p Fy [This is basically the same thing as a choice
of hyperspecial subgroup of U(V)(Q,), and these don’t always exist when N is even]

2.2 A unitary moduli scheme

Recall that we have a finite étale scheme T}/ Zg’ with an action of the abelian group
To(A™P) [ To(Zp)) K-

The S-points Ty (S) have a moduli description as equivalence classes of triples (Ag, Ao, 7f) where Ay is a
unitary Op-abelian scheme of signature type ®, where \g is a prime-to-p polarisation and where 7} is a
Kg level structure. All the moduli schemes that we define in this section will live over T.



Definition 2.2.1. Consider the moduli functor My = M, (V, K?), for a fized neat open compact subgroup
KP C U(V)(A>®P), such that M(S) is the set of equivalence classes of sextuples

(Ao, Ao, b A, A nP)
where
° (Ao,)\o,ng) € Ty(5)

o (A, ) is a unitary Op abelian scheme of signature type N® — 7o + 75, over S with A a prime-to-p
polarisation

o 1P is a KP-level structure, which is something like a KP orbit of morphisms

V ©g AP - Homy ., (Hf’t(Ao, AP) (A, A‘”’p) .

Remark 2.2.2. In [2], the authors consider the objects M,(V, —) as functors from

B(V)P x T = Sch e,

essentially it says that all our constructions are compatible with changing the prime-to-p level (and that
there are Hecke operators) and acting by the abelian group To(A*P) /Ty (Z(p))Kg , we refer to loc. cit. for
the details

Remark 2.2.3. We are purposely omitting details regarding the equivalence relation on the sextuples and
also the detailed definition of prime-to-p level structures, we refer to [2] for the details.

Theorem 2.2.4 (Thm 4.13 of [2]). The morphism My — T} is representable by quasi-projective smooth
schemes of relative dimension N — 1, the morphism is projective if and only its generic fiber is. The
relative tangent sheaf is given by

Hom (w4t -, (Lie A)r. ) .
Moreover, there is an isomorphism
MQ ~ Sh(V) XSpec F Tg

Remark 2.2.5. The Shimura variety Sh(V') is not of PEL type, so we cannot expect a moduli description
without the ‘extra torus part’ provided by T}.

2.3 Basic correspondence

In this section, we will define a moduli interpretation Sy, of the Shimura set that parametrises the irre-
ducible components of the basic locus of M. Using this, we will define a moduli theoretic correspondence

By

RN 1)

basic
M Sp.



and show that the left hand morphism can be identified with the normalisation of MEaSiC and the right
hand morphism is surjective with geometric fibers isomorphic to certain Deligne-Lusztig varieties.

Definition 2.3.1. We define S, = S,(V, KP) to be the moduli functor whose S points Sy(S) is the set of
equivalence classes of sextuples
(Ao, Ao, o3 A%, X, nP)
where
* (Ao, X, ) € Ty(S);

o (A* X\*) is a unitary O abelian scheme of signature type N® over S such that ker \*[p°] is trivial
if N is odd and contained in A*[p] of rank p? if N is even;

o nP* is a KP level structure, which is something like a KP orbit of morphisms
, \ 7)\* . , . ;
P VeR? - HomFaui, (H{'(Ao, A7), H{'(A, A%).
Remark 2.3.2. The level structure at p of this ‘Shimura variety’ really corresponds to a lattice A C V®r F,
such that
pA C AV
of index 0 (if N is odd) or index p? if N is even [this is what comes out of the Vollaard-Wedhorn
construction], hence why we take level structures with respect to wy.
Proposition 2.3.3. The morphism S, — T}, is represented by finite étale schemes.
Definition 2.3.4. We define B, = B,(V, K?) to be the moduli functor whose S points Sp(S) is the set
of equivalence classes of tuples
(Ao, Ao, 755 A, A, 1P5 A% X5 P ),
where
d (A07 Aos 7787 A7 A, 77p) € MP(S)
o (Ao, )\0, Up, A*, )\*, ﬁp*) € SP(S)
e a: A— A* is an Op-linear quasi-isogeny such that
~ eralp™] € Al
—wA=a"oNoa
— « preserves KP level structures
Remark 2.3.5. There is an obvious correspondence as in by the first two conditions. Note that the

condition @\ = a" o A\* o a implies that ker a[p™] C A[p] is an isotropic subspace for the Weil pairing
that satisfies

ti (ker ap™])* / (ker afp™]) :{ 0 N odd

p* if N even
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2.3.6 Linear algebraic description of the fibers

The idea is now that the fiber By of By — Sy over a point s* = (A*, \*) € Sy(k) should have a linear
algebraic description. For this we consider

Vs* = H?R(A*/k)q-oo
which we equip with the pairing

{, e Ve x Ve = k

defined by { , }s(z,y) = (Fx,y)\ where
F: HI® (A" k), — HM(A* k) e
and where (, )« is the pairing
H{™ (A" /k)re, x H{Y(A*/E)7, — K
induced by A\*. Given (A, \) and an isogeny
a:A— A*
with dual isogeny B : A* — A satisfying 8 o a = w, we consider the subspace
H=p1, (wav,rm) C HIY (AN,
where

Bar H?R(A*)Too - H?R(A)T

oo

is the induced map on de-Rham homology. The main idea of everything that will happen next, is that
the subspace H will uniquely determine 8 and therefore o.. Therefore, the fiber B4+ will be contained in
some sort of flag variety, and so we need to determine its image.

Lemma 2.3.7. The subspace H C Vs« satisfies
H* c H,
where H* is the right-orthogonal complement of H under { , }s+. Moreover H has rank (%1

Proof. Omitted, the proof in [2] is derived from Lemma 3.4.13 of op.cit. which mostly uses Dieudonné
theory. ]

Proposition 2.3.8 (Proposition A.1.3 of [2]). There is a smooth projective geometrically connected

scheme DLy [k of dimension |¥5L| such that DLe(S) parametrises rank [23L] sub-bundles H C
Ve Qp Og such that H+ € H. Its tangent bundle is given by

Hom(H/H*,Vpr_. /M)



Proof. The argument for representability is standard and shows that our variety is a closed subscheme
of some Grassmannian, hence projective. If R — Ry is a surjection of artinian local rings with kernel I
satisfying I2 = 0 and Hy € DLg(Rp) then we can a lift H € DL (R) as follows:

e We first lift Hy to an arbitrary subspace H' C Vg using smoothness of Grassmannians.

e We then note that since I? = 0, the orthogonal complement K = H'* does not depend on the choice
of lift of H' (because H'* depends only on H'®) which does not depend on the choice of H');

e We are now free to choose a lift H of Hy such that K C H, by the smoothness of P(V/H").

As a corollary we get the description of the tangent bundle from the theorem ]

Theorem 2.3.9 (Theorem 4.2.5 of [2]). The fibers Bs« of By — Sy, are isomorphic to D Lg with morphism

described on k points as above. The morphism Bg» — By — My, is a closed immersion of pure codimension

L%J when KP is sufficiently small with normal bundle

Hom(wav 7. ,imq, ).

Remark 2.3.10. It should follow as in (3] that the the map B, — M, surjects onto the basic locus, but as
far as I can tell this is never made explicit in [2]. [The fact that the map lands in the basic locus follows
from the signature condition on S|

2.4 Uniformisation data

We are now going to relate Sy, to a Shimura set for a definite inner form I of U(V).

Definition 2.4.1. A definite uniformisation datum for V at p is a collection V*, i, {)‘q*}q\p) where
o V* is a standard definite hermitian space over F' of rank N;
o i:V ®gAXP = V*®gA™P is an isometry;
e for every prime p # q of FT above p, a self dual lattice A¥;
o A lattice Ay such that

PA; C (A})Y
of index 0 when N is odd and of index p*> when N is even.

Remark 2.4.2. Such definite uniformisation data should always exist (by some kind of Hasse principle?)

Proposition 2.4.3. There is an isomorphism

Sp(Fp) = Sh(V*, K;) x Tp(Fy).



2.5 Tate cycles
Suppose that n = 2r + 1 is odd, then we consider the natural maps
inc;” : Qe[Sh(V*, K)] = Hg(Sp, Qr) = He(By, Qr) — HF (My, Qe(r))
inc} + H (My, Qe(r)) — HZ' (B, Qe(r)) = H(Sp, Qu(r))) = Qe[Sh(V*, K})]

Theorem 2.5.1 (Theorem 4.3.10 of [2]). Suppose that N = 2r + 1 is odd. Then the composition
inc} oincf
is equal to the Hecke operator
T
7V7p = Zd,rié’p ’ Tvav(s

0=0

Here Ty 5 are certain ‘standard Hecke operators’ defined in appendiz B and d,_s, are integers defined
in Section 1.3 (they are basically polynomials in p).

Proof. The paper [2] cites Theorem 9.3.5 of |4], which does not exist (as of 10-2-2020). However, it seems
that that it does follow from Section 7.4 of [4], which is the computation of the intersection matrix of
cycle classes of the basic locus, and the combinatorics in appendix B of [2]. Unfortunately, some of the
proofs in Appendix B also refer to Section 9 of [4]. O

3 Functoriality and special morphisms

The reason (I think) that we are considering such ‘weird’ moduli problems, is because there is a natural
map (which wouldn’t be there if we just considered the usual PEL type unitary Shimura varieties)

my < Mp(vn) — Mp(Vn+1)(A0a )\0>778;Aa Avnp) — (A()a )\0777§;A X A07)\ X )\0777p S 1)7

where now V,,, V11 are standard indefinite hermitian spaces of rank n,n+ 1 respectively. We are going to
show that all constructions of the previous section are compatible with this, constructing a commutative
diagram:

Sp(Vit1) < Byp(Viy1) —— Myp(Vig1)

[

[
Sp(Vi)sp «—— Bp(Va)sp my (2)
|
)

|

Sp(Vn) ¢ Bp(V)) ——— Myp(Va)

Definition 3.0.1. We define Sy(Vy)sp = Sp(Va, KP)sp to be the functor whose S points is the set of of
equivalence classes of tuples

(A[)a )‘0, 778» A*a )‘*a 77p*; E(a E(’ 77?*’ 6*)3

where



o (Ao, Ao, g5 A, A", mP*) € 8,(Va)(5);

o (Ao, Mo, 0s A AL ET) € Sp(Var)(5);

e *: A" x Ay — AE‘ 1s an Op-linear quasi p-isogeny such that
1. ker 6*[p>] C (A* x Alp]);
2. N xwhg =6 o A 06%;

3. 0% is compatible with the KP level structures.
Lemma 3.0.2. The forgetful map
SP(Vn)SP - Sp(VnH)
s an isomorphism when n is odd and finite etale of degree p 4+ 1 when n is even.

Definition 3.0.3. We now define By(V},)sp by the following Cartesian diagram:

| |

B, (V) —— Sp(Va).
One can now check that there is indeed a morphism By (V},)sp — Bp(Vy41) making (2) commute.
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