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1 Introduction

We will start by discussing a ‘baby version’ of section 4 of [2], and hope that this will provide some
intuition for what in the paper. Let E/Q be a quadratic imaginary field, let V/E be an hermitian space
of rank 5 with signature (1, 4) and let GU(V ) be the associated unitary similitude group. Furthermore
let p > 2 be a prime inert in E and let Kp ⊂ GU(V ) be a neat compact open subgroup. We will consider
the functor M = M(V,Kp) which associates to S/Z(p) equivalence classes of triples (A, λ, ηp), where

• (A, λ) is a unitary OE abelian scheme over S of signature type (1, 4) and λ is a prime-to-p polari-
sation;

• ηp is a Kp level structure (which is something that we will be vague about throughout this talk)

Proposition 1.0.1. The functor M is representable by a scheme M and the structure map M→ SpecZ(p)

is quasiprojective and smooth of relative dimension 4.

Vollaard and Wedhorn [3] studied the basic locus of this Shimura variety (with 5 replaced by arbitrary
n) and proved the following result:

Theorem 1.0.2 (Theorem 5.2 of [3]). Assume that Kp is sufficiently small, then the irreducible com-
ponents of the basic locus Mb

Fp
are isomorphic to a certain Deligne-Lusztig variety DL(W ), which is an

irreducible smooth projective variety.

• Moreover, the set of irreducible components of the basic locus is in bijection with the adelic double
coset

I(Q)\I(A∞)/K,

where I/Q is the unique inner form of G such that G(A∞) ' I(A∞) and such that I(R) is compact
mod centre.

• Two irreducible components X1 and X2 are either disjoint, intersect in a point or intersect in a
smooth curve C ⊂ DL(W ). This intersection behaviour is governed by the Bruhat-Tits tree of
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IQp = Jb, in particular the correspondences

T2 : X 7→
∑

Y |X∩Y={pt}

Y

T1 : X 7→
∑

Y |X∩Y=C

Y

on I(Q)\I(A∞)/K can be identified with ‘natural’ Hecke operators T1, T2 in the spherical hecke
algebra of I.

Remark 1.0.3. This means that the natural map

β : Q`[I(Q)\I(A∞)/K] ' HBM
4 (Mb

Fp
,Q`)→ H4

c (MFp ,Q`)→ H4
c (Mb

Fp
,Q`) ' Q`[I(Q)\I(A∞)/K]

is a linear combination

2∑
δ=0

d2−δ · Ti

with the coefficients given by intersection numbers (it turns out the the intersection numbers between X
and Y only depend on the codimension of X ∩ Y and not on the actual choice of components X and Y ,
this uses the excess intersection formula and some deformation theory). Here T0 is the identity and its
coefficient will be the self-intersection of components X in MFp .

Remark 1.0.4. The main theorem of [4] also tells us what β is, but now on the other side of the Satake
correspondence. To be precise, they interpret the spherical Hecke algebra as global functions on the stack[

Ĝσ

Ad Ĝ

]

of unramified Langlands parameters and write α (up to a scalar) as a product of∏
χ∈Φ∨rel

(eχ ± 1)

of certain cocharacters of Ŝ, where S is a maximal split torus of G. This is what allows them to say for
what kind of (spherical) representations πp of G(Qp) the map β is nonzero, in terms of the Langlands
parameter of πp. In particular, they prove that it suffices to show that the Langlands parameter,which
is just a conjugacy class of elements in Ĝ(Q`), is regular semi-simple. It is possible to translate from
this point of view to the previous by doing lots of combinatorics (appendix B of [2]) and we then find [I
probably made some mistakes doing this computation]

d0 = p6 + 2p5 − p4 + p3 − p2 − p+ 1

d1 = p3 − 4p2 + p

d2 = 1.
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Remark 1.0.5. The proof in [3] proceeds by studying the Rapoport-Zink space that uniformises Mb
Fp

,

which has the disadvantage that one does not use the description of I(Q)\I(A∞)/K as a moduli space.
The authors of [2] proceed by giving a moduli description of I(Q)\I(A∞)/K and then writing down a
moduli theoretic correspondence

Bp

I(Q)\I(A∞)/K Mb
Fp
.

THey then identify the right arrow with the normalisation map and the fibers of the left arrow with
Deligne-Lusztig varieties. This is also the perspective taken in [1], which treats a slightly different case.
This makes it easier to compute normal bundles/tangent bundles which is necessary to use the excess
intersection formula.

2 Unitary Moduli schemes

In this section, we will follow Section 4 of [2] and construct the analogues of the objects from the intro-
duction. We start by fixing

2.1 Notation

• a CM extension F/F+;

• a CM type Φ containing τ∞;

• a special inert prime p of F+;

• A rational skew-hermitian space W0 over OF ⊗ Z(p) with similitude group T0;

• a neat open compact subgroup Kp
0 ⊂ T0(A∞,p);

• A totally positive element $ ∈ OF+ with p-adic valuation one and q-adic valuation zero for all
p 6= q | p;

• A standard indefinite hermitian space V over F of rank N ≥ 1

• For every prime q | p, a self dual lattice Λq in V ⊗F Fq [This is basically the same thing as a choice
of hyperspecial subgroup of U(V )(Qp), and these don’t always exist when N is even]

2.2 A unitary moduli scheme

Recall that we have a finite étale scheme Tp/ZΦ
p with an action of the abelian group

T0(A∞,p)/T0(Z(p))K
p
0 .

The S-points Tp(S) have a moduli description as equivalence classes of triples (A0, λ0, η
p
0) where A0 is a

unitary OF -abelian scheme of signature type Φ, where λ0 is a prime-to-p polarisation and where ηp0 is a
Kp

0 level structure. All the moduli schemes that we define in this section will live over Tp.
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Definition 2.2.1. Consider the moduli functor Mp = Mp(V,K
p), for a fixed neat open compact subgroup

KP ⊂ U(V )(A∞,p), such that Mp(S) is the set of equivalence classes of sextuples

(A0, λ0, η
p
0 ;A, λ, ηp)

where

• (A0, λ0, η
p
0) ∈ Tp(S)

• (A, λ) is a unitary OF abelian scheme of signature type NΦ− τ∞ + τ c∞ over S with λ a prime-to-p
polarisation

• ηp is a Kp-level structure, which is something like a Kp orbit of morphisms

V ⊗Q A∞,p → Homλ0,λ
F⊗QA∞,p

(
H ét

1 (A0,A∞,p), H ét
1 (A,A∞,p

)
.

Remark 2.2.2. In [2], the authors consider the objects Mp(V,−) as functors from

k(V )p × T→ Sch′/ZΦ
p
,

essentially it says that all our constructions are compatible with changing the prime-to-p level (and that
there are Hecke operators) and acting by the abelian group T0(A∞,p)/T0(Z(p))K

p
0 , we refer to loc. cit. for

the details

Remark 2.2.3. We are purposely omitting details regarding the equivalence relation on the sextuples and
also the detailed definition of prime-to-p level structures, we refer to [2] for the details.

Theorem 2.2.4 (Thm 4.13 of [2]). The morphism Mp → Tp is representable by quasi-projective smooth
schemes of relative dimension N − 1, the morphism is projective if and only its generic fiber is. The
relative tangent sheaf is given by

Hom
(
ωAt,τ∞ , (LieA)τ∞

)
.

Moreover, there is an isomorphism

Mη
p ' Sh(V )×SpecF Tη

p

Remark 2.2.5. The Shimura variety Sh(V ) is not of PEL type, so we cannot expect a moduli description
without the ‘extra torus part’ provided by Tp.

2.3 Basic correspondence

In this section, we will define a moduli interpretation Sp of the Shimura set that parametrises the irre-
ducible components of the basic locus of Mp. Using this, we will define a moduli theoretic correspondence

Bp

Mbasic
p Sp,

(1)
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and show that the left hand morphism can be identified with the normalisation of Mbasic
p and the right

hand morphism is surjective with geometric fibers isomorphic to certain Deligne-Lusztig varieties.

Definition 2.3.1. We define Sp = Sp(V,K
p) to be the moduli functor whose S points Sp(S) is the set of

equivalence classes of sextuples

(A0, λ0, η
p
0 ;A?, λ?, ηp?)

where

• (A0, λ0, η
p
0) ∈ Tp(S);

• (A?, λ?) is a unitary OF abelian scheme of signature type NΦ over S such that kerλ?[p∞] is trivial
if N is odd and contained in A?[p] of rank p2 if N is even;

• ηp? is a Kp level structure, which is something like a Kp orbit of morphisms

ηp? : V⊗∞,pQ → Hom$λ0,λ?

F⊗QA∞,p
(
H ét

1 (A0,A∞,p), H ét
1 (A,A∞,p

)
.

Remark 2.3.2. The level structure at p of this ‘Shimura variety’ really corresponds to a lattice Λ ⊂ V ⊗F Fp

such that

pΛ ⊂ Λ∨

of index 0 (if N is odd) or index p2 if N is even [this is what comes out of the Vollaard-Wedhorn
construction], hence why we take level structures with respect to $λ0.

Proposition 2.3.3. The morphism Sp → Tp is represented by finite étale schemes.

Definition 2.3.4. We define Bp = Bp(V,K
p) to be the moduli functor whose S points Sp(S) is the set

of equivalence classes of tuples

(A0, λ0, η
p
0 ;A, λ, ηp;A?, λ?, ηp?;α),

where

• (A0, λ0, η
p
0 ;A, λ, ηp) ∈Mp(S)

• (A0, λ0, η
p
0 ;A?, λ?, ηp?) ∈ Sp(S).

• α : A→ A? is an OF -linear quasi-isogeny such that

– kerα[p∞] ⊂ A[p]

– $λ = α∨ ◦ λ? ◦ α

– α preserves Kp level structures

Remark 2.3.5. There is an obvious correspondence as in (1) by the first two conditions. Note that the
condition $λ = α∨ ◦ λ? ◦ α implies that kerα[p∞] ⊂ A[p] is an isotropic subspace for the Weil pairing
that satisfies

rk
(

kerα[p∞])⊥/(kerα[p∞])
)
'
{

0 if N odd
p2 if N even
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2.3.6 Linear algebraic description of the fibers

The idea is now that the fiber Bs? of Bp → Sp over a point s∗ = (A?, λ?) ∈ Sp(k) should have a linear
algebraic description. For this we consider

Vs? := HdR
1 (A∗/k)τ∞

which we equip with the pairing

{ , }s? : Vs? × Vs? → k

defined by { , }s?(x, y) = 〈Fx, y〉λ? where

F : HdR
1 (A∗/k)τ∞ → HdR

1 (A∗/k)τc∞

and where 〈 , 〉λ? is the pairing

HdR
1 (A∗/k)τc∞ ×H

dR
1 (A∗/k)τ∞ → k

induced by λ?. Given (A, λ) and an isogeny

α : A→ A?

with dual isogeny β : A? → A satisfying β ◦ α = $, we consider the subspace

H = β−1
∗,τ∞

(
ωA∨,τ∞

)
⊂ HdR

1 (A?)τ∞ ,

where

β∗,τ : HdR
1 (A?)τ∞ → HdR

1 (A)τ∞

is the induced map on de-Rham homology. The main idea of everything that will happen next, is that
the subspace H will uniquely determine β and therefore α. Therefore, the fiber Bs? will be contained in
some sort of flag variety, and so we need to determine its image.

Lemma 2.3.7. The subspace H ⊂ Vs? satisfies

H⊥ ⊂ H,

where H⊥ is the right-orthogonal complement of H under { , }s?. Moreover H has rank dN+1
2 e.

Proof. Omitted, the proof in [2] is derived from Lemma 3.4.13 of op.cit. which mostly uses Dieudonné
theory.

Proposition 2.3.8 (Proposition A.1.3 of [2]). There is a smooth projective geometrically connected
scheme DLs?/k of dimension bN−1

2 c such that DLs?(S) parametrises rank dN+1
2 e sub-bundles H ⊂

Vs? ⊗k OS such that H⊥ ⊂ H. Its tangent bundle is given by

Hom(H/H⊥,VDLs?/H).
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Proof. The argument for representability is standard and shows that our variety is a closed subscheme
of some Grassmannian, hence projective. If R � R0 is a surjection of artinian local rings with kernel I
satisfying I2 = 0 and H0 ∈ DLs∗(R0) then we can a lift H ∈ DLs∗(R) as follows:

• We first lift H0 to an arbitrary subspace H ′ ⊂ VR using smoothness of Grassmannians.

• We then note that since Ip = 0, the orthogonal complement K = H ′⊥ does not depend on the choice
of lift of H ′ (because H ′⊥ depends only on H ′(p) which does not depend on the choice of H ′);

• We are now free to choose a lift H of H0 such that K ⊂ H, by the smoothness of P(V/H⊥).

As a corollary we get the description of the tangent bundle from the theorem

Theorem 2.3.9 (Theorem 4.2.5 of [2]). The fibers Bs? of Bp → Sp are isomorphic to DLs? with morphism
described on k points as above. The morphism Bs? → Bp →Mp is a closed immersion of pure codimension
bN2 c when Kp is sufficiently small with normal bundle

Hom(ωA∨,τ∞ , imα∗,τ∞ ).

Remark 2.3.10. It should follow as in [3] that the the map Bp →Mp surjects onto the basic locus, but as
far as I can tell this is never made explicit in [2]. [The fact that the map lands in the basic locus follows
from the signature condition on Sp.]

2.4 Uniformisation data

We are now going to relate Sp, to a Shimura set for a definite inner form I of U(V ).

Definition 2.4.1. A definite uniformisation datum for V at p is a collection V ?, i, {λq?}q|p) where

• V ? is a standard definite hermitian space over F of rank N ;

• i : V ⊗Q A∞,p → V ∗ ⊗Q A∞,p is an isometry;

• for every prime p 6= q of F+ above p, a self dual lattice Λ?q;

• A lattice Λ?p such that

pΛ?p ⊂ (Λ?p)
∨

of index 0 when N is odd and of index p2 when N is even.

Remark 2.4.2. Such definite uniformisation data should always exist (by some kind of Hasse principle?)

Proposition 2.4.3. There is an isomorphism

Sp(Fp) ' Sh(V ?,K?
p)×Tp(Fp).
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2.5 Tate cycles

Suppose that n = 2r + 1 is odd, then we consider the natural maps

inc?! : Q`[Sh(V ?,K?
p)] ' H0

T(Sp,Q`) ' H0
T(Bp,Q`)→ H2r

T (Mp,Q`(r))

inc∗? : H2r
T (Mp,Q`(r))→ H2r

T (Bp,Q`(r)) ' H0
Σ(Sp,Q`(r))) ' Q`[Sh(V ?,K?

p)]

Theorem 2.5.1 (Theorem 4.3.10 of [2]). Suppose that N = 2r + 1 is odd. Then the composition

inc∗? ◦ inc?!

is equal to the Hecke operator

T?
N,p =

r∑
δ=0

dr−δ,p ·TN,p,δ.

Here TN,p,δ are certain ‘standard Hecke operators’ defined in appendix B and dr−δ,p are integers defined
in Section 1.3 (they are basically polynomials in p).

Proof. The paper [2] cites Theorem 9.3.5 of [4], which does not exist (as of 10-2-2020). However, it seems
that that it does follow from Section 7.4 of [4], which is the computation of the intersection matrix of
cycle classes of the basic locus, and the combinatorics in appendix B of [2]. Unfortunately, some of the
proofs in Appendix B also refer to Section 9 of [4].

3 Functoriality and special morphisms

The reason (I think) that we are considering such ‘weird’ moduli problems, is because there is a natural
map (which wouldn’t be there if we just considered the usual PEL type unitary Shimura varieties)

m↑ : Mp(Vn)→Mp(Vn+1)(A0, λ0, η
p
0 ;A, λ, ηp)→ (A0, λ0, η

p
0 ;A×A0, λ× λ0, η

p ⊕ 1),

where now Vn, Vn+1 are standard indefinite hermitian spaces of rank n, n+1 respectively. We are going to
show that all constructions of the previous section are compatible with this, constructing a commutative
diagram:

Sp(Vn+1) Bp(Vn+1) Mp(Vn+1)

Sp(Vn)sp Bp(Vn)sp

Sp(Vn) Bp(Vn) Mp(Vn)

m↑ (2)

Definition 3.0.1. We define Sp(Vn)sp = Sp(Vn,K
p)sp to be the functor whose S points is the set of of

equivalence classes of tuples

(A0, λ0, η
p
0 ;A?, λ?, ηp?;A?\ , λ

?
\ , η

p?
\ ; δ?),

where
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• (A0, λ0, η
p
0 ;A?, λ?, ηp?) ∈ Sp(Vn)(S);

• (A0, λ0, η
p
0 ;A?\ , λ

?
\ , η

p?
\ ) ∈ Sp(Vn+1)(S);

• δ? : A? ×A0 → A?\ is an OF -linear quasi p-isogeny such that

1. ker δ?[p∞] ⊂ (A? ×A[p]);

2. λ? ×$λ0 = δ?∨ ◦ λ?\ ◦ δ?;

3. δ? is compatible with the Kp level structures.

Lemma 3.0.2. The forgetful map

Sp(Vn)sp → Sp(Vn+1)

is an isomorphism when n is odd and finite etale of degree p+ 1 when n is even.

Definition 3.0.3. We now define Bp(Vn)sp by the following Cartesian diagram:

Bp(Vn)sp Sp(Vn)sp

Bp(Vn) Sp(Vn).

One can now check that there is indeed a morphism Bp(Vn)sp → Bp(Vn+1) making (2) commute.
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