Unitary moduli schemes: smooth case

Pol van Hoften pol.van_hoften@kcl.ac.uk

February 10, 2020

1 Introduction

We will start by discussing a 'baby version' of section 4 of [2], and hope that this will provide some intuition for what in the paper. Let E/\mathbb{Q} be a quadratic imaginary field, let V/E be an hermitian space of rank 5 with signature (1,4) and let GU(V) be the associated unitary similitude group. Furthermore let p > 2 be a prime inert in E and let $K^p \subset GU(V)$ be a neat compact open subgroup. We will consider the functor $\mathbf{M} = \mathbf{M}(V, K^p)$ which associates to $S/\mathbb{Z}_{(p)}$ equivalence classes of triples (A, λ, η^p) , where

- (A, λ) is a unitary \mathcal{O}_E abelian scheme over S of signature type (1, 4) and λ is a prime-to-p polarisation;
- η^p is a K^p level structure (which is something that we will be vague about throughout this talk)

Proposition 1.0.1. The functor \mathbf{M} is representable by a scheme \mathbf{M} and the structure map $\mathbf{M} \to \operatorname{Spec} \mathbb{Z}_{(p)}$ is quasiprojective and smooth of relative dimension 4.

Vollaard and Wedhorn [3] studied the basic locus of this Shimura variety (with 5 replaced by arbitrary n) and proved the following result:

Theorem 1.0.2 (Theorem 5.2 of [3]). Assume that K^p is sufficiently small, then the irreducible components of the basic locus $\mathbf{M}_{\overline{\mathbb{F}}_p}^b$ are isomorphic to a certain Deligne-Lusztig variety DL(W), which is an irreducible smooth projective variety.

• Moreover, the set of irreducible components of the basic locus is in bijection with the adelic double coset

$$I(\mathbb{Q})\backslash I(\mathbb{A}^{\infty})/K$$
,

where I/\mathbb{Q} is the unique inner form of G such that $G(\mathbb{A}^{\infty}) \simeq I(\mathbb{A}^{\infty})$ and such that $I(\mathbb{R})$ is compact mod centre.

• Two irreducible components X_1 and X_2 are either disjoint, intersect in a point or intersect in a smooth curve $C \subset DL(W)$. This intersection behaviour is governed by the Bruhat-Tits tree of

 $I_{\mathbb{Q}_p} = J_b$, in particular the correspondences

$$T_2: X \mapsto \sum_{Y|X \cap Y = \{pt\}} Y$$

$$T_1: X \mapsto \sum_{Y|X \cap Y = C} Y$$

on $I(\mathbb{Q})\backslash I(\mathbb{A}^{\infty})/K$ can be identified with 'natural' Hecke operators T_1, T_2 in the spherical hecke algebra of I.

Remark 1.0.3. This means that the natural map

$$\beta: \mathbb{Q}_{\ell}[I(\mathbb{Q})\backslash I(\mathbb{A}^{\infty})/K] \simeq H^{\mathrm{BM}}_{4}(\mathbf{M}^{\mathrm{b}}_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\ell}) \to H^{4}_{c}(\mathbf{M}_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\ell}) \to H^{4}_{c}(\mathbf{M}^{\mathrm{b}}_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\ell}) \simeq \mathbb{Q}_{\ell}[I(\mathbb{Q})\backslash I(\mathbb{A}^{\infty})/K]$$

is a linear combination

$$\sum_{\delta=0}^{2} \mathbf{d}_{2-\delta} \cdot T_i$$

with the coefficients given by intersection numbers (it turns out the the intersection numbers between X and Y only depend on the codimension of $X \cap Y$ and not on the actual choice of components X and Y, this uses the excess intersection formula and some deformation theory). Here T_0 is the identity and its coefficient will be the self-intersection of components X in $\mathbf{M}_{\overline{\mathbb{F}}_p}$.

Remark 1.0.4. The main theorem of [4] also tells us what β is, but now on the other side of the Satake correspondence. To be precise, they interpret the spherical Hecke algebra as global functions on the stack

$$\left[\frac{\hat{G}\sigma}{\operatorname{Ad}\hat{G}}\right]$$

of unramified Langlands parameters and write α (up to a scalar) as a product of

$$\prod_{\chi \in \Phi_{\rm rel}^{\vee}} (e^{\chi} \pm 1)$$

of certain cocharacters of \hat{S} , where S is a maximal split torus of G. This is what allows them to say for what kind of (spherical) representations π_p of $G(\mathbb{Q}_p)$ the map β is nonzero, in terms of the Langlands parameter of π_p . In particular, they prove that it suffices to show that the Langlands parameter, which is just a conjugacy class of elements in $\hat{G}(\overline{\mathbb{Q}_\ell})$, is regular semi-simple. It is possible to translate from this point of view to the previous by doing lots of combinatorics (appendix B of [2]) and we then find [I probably made some mistakes doing this computation]

$$\mathbf{d}_0 = p^6 + 2p^5 - p^4 + p^3 - p^2 - p + 1$$

$$\mathbf{d}_1 = p^3 - 4p^2 + p$$

$$\mathbf{d}_2 = 1.$$

Remark 1.0.5. The proof in [3] proceeds by studying the Rapoport-Zink space that uniformises $\mathbf{M}_{\mathbb{F}_p}^{\mathbf{b}}$, which has the disadvantage that one does not use the description of $I(\mathbb{Q})\backslash I(\mathbb{A}^{\infty})/K$ as a moduli space. The authors of [2] proceed by giving a moduli description of $I(\mathbb{Q})\backslash I(\mathbb{A}^{\infty})/K$ and then writing down a moduli theoretic correspondence

They then identify the right arrow with the normalisation map and the fibers of the left arrow with Deligne-Lusztig varieties. This is also the perspective taken in [1], which treats a slightly different case. This makes it easier to compute normal bundles/tangent bundles which is necessary to use the excess intersection formula.

2 Unitary Moduli schemes

In this section, we will follow Section 4 of [2] and construct the analogues of the objects from the introduction. We start by fixing

2.1 Notation

- a CM extension F/F^+ ;
- a CM type Φ containing τ_{∞} ;
- a special inert prime \mathfrak{p} of F^+ ;
- A rational skew-hermitian space W_0 over $\mathcal{O}_F \otimes \mathbb{Z}_{(p)}$ with similar group T_0 ;
- a neat open compact subgroup $K_0^p \subset T_0(\mathbb{A}^{\infty,p})$;
- A totally positive element $\varpi \in \mathcal{O}_{F^+}$ with \mathfrak{p} -adic valuation one and \mathfrak{q} -adic valuation zero for all $\mathfrak{p} \neq \mathfrak{q} \mid p$;
- A standard indefinite hermitian space V over F of rank $N \geq 1$
- For every prime $\mathfrak{q} \mid p$, a self dual lattice $\Lambda_{\mathfrak{q}}$ in $V \otimes_F F_{\mathfrak{q}}$ [This is basically the same thing as a choice of hyperspecial subgroup of $U(V)(\mathbb{Q}_p)$, and these don't always exist when N is even]

2.2 A unitary moduli scheme

Recall that we have a finite étale scheme $\mathbf{T}_{\mathfrak{p}}/\mathbb{Z}_p^{\Phi}$ with an action of the abelian group

$$T_0(\mathbb{A}^{\infty,p})/T_0(\mathbb{Z}_{(p)})K_0^p.$$

The S-points $\mathbf{T}_{\mathfrak{p}}(S)$ have a moduli description as equivalence classes of triples $(A_0, \lambda_0, \eta_0^p)$ where A_0 is a unitary \mathcal{O}_F -abelian scheme of signature type Φ , where λ_0 is a prime-to-p polarisation and where η_0^p is a K_0^p level structure. All the moduli schemes that we define in this section will live over $\mathbf{T}_{\mathfrak{p}}$.

Definition 2.2.1. Consider the moduli functor $\mathbf{M}_{\mathfrak{p}} = \mathbf{M}_{\mathfrak{p}}(V, K^p)$, for a fixed neat open compact subgroup $K^P \subset U(V)(\mathbb{A}^{\infty,p})$, such that $\mathbf{M}_{\mathfrak{p}}(S)$ is the set of equivalence classes of sextuples

$$(A_0, \lambda_0, \eta_0^p; A, \lambda, \eta^p)$$

where

- $(A_0, \lambda_0, \eta_0^p) \in \mathbf{T}_{\mathfrak{p}}(S)$
- (A, λ) is a unitary \mathcal{O}_F abelian scheme of signature type $N\Phi \tau_{\infty} + \tau_{\infty}^c$ over S with λ a prime-to-p polarisation
- η^p is a K^p -level structure, which is something like a K^p orbit of morphisms

$$V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p} \to \operatorname{Hom}_{F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}}^{\lambda_0,\lambda} \left(H_1^{\acute{e}t}(A_0,\mathbb{A}^{\infty,p}), H_1^{\acute{e}t}(A,\mathbb{A}^{\infty,p}) \right).$$

Remark 2.2.2. In [2], the authors consider the objects $\mathbf{M}_{\mathfrak{p}}(V,-)$ as functors from

$$\mathfrak{k}(V)^p \times \mathfrak{T} \to \mathrm{Sch}'_{\mathbb{Z}_n^\Phi},$$

essentially it says that all our constructions are compatible with changing the prime-to-p level (and that there are Hecke operators) and acting by the abelian group $T_0(\mathbb{A}^{\infty,p})/T_0(\mathbb{Z}_{(p)})K_0^p$, we refer to loc. cit. for the details

Remark 2.2.3. We are purposely omitting details regarding the equivalence relation on the sextuples and also the detailed definition of prime-to-p level structures, we refer to [2] for the details.

Theorem 2.2.4 (Thm 4.13 of [2]). The morphism $\mathbf{M}_{\mathfrak{p}} \to \mathbf{T}_{\mathfrak{p}}$ is representable by quasi-projective smooth schemes of relative dimension N-1, the morphism is projective if and only its generic fiber is. The relative tangent sheaf is given by

Hom
$$(\omega_{\mathcal{A}^t,\tau_{\infty}}, (\operatorname{Lie} A)_{\tau_{\infty}})$$
.

Moreover, there is an isomorphism

$$\mathbf{M}_{\mathfrak{p}}^{\eta} \simeq \operatorname{Sh}(V) \times_{\operatorname{Spec} F} \mathbf{T}_{\mathfrak{p}}^{\eta}$$

Remark 2.2.5. The Shimura variety Sh(V) is not of PEL type, so we cannot expect a moduli description without the 'extra torus part' provided by $\mathbf{T}_{\mathfrak{p}}$.

2.3 Basic correspondence

In this section, we will define a moduli interpretation S_p of the Shimura set that parametrises the irreducible components of the basic locus of M_p . Using this, we will define a moduli theoretic correspondence

and show that the left hand morphism can be identified with the normalisation of $\mathbf{M}_{\mathfrak{p}}^{\mathrm{basic}}$ and the right hand morphism is surjective with geometric fibers isomorphic to certain Deligne-Lusztig varieties.

Definition 2.3.1. We define $\mathbf{S}_{\mathfrak{p}} = \mathbf{S}_{\mathfrak{p}}(V, K^p)$ to be the moduli functor whose S points $\mathbf{S}_{\mathfrak{p}}(S)$ is the set of equivalence classes of sextuples

$$(A_0, \lambda_0, \eta_0^p; A^{\star}, \lambda^{\star}, \eta^{p\star})$$

where

- $(A_0, \lambda_0, \eta_0^p) \in \mathbf{T}_{\mathfrak{p}}(S)$;
- (A^*, λ^*) is a unitary \mathcal{O}_F abelian scheme of signature type $N\Phi$ over S such that $\ker \lambda^*[p^\infty]$ is trivial if N is odd and contained in $A^*[\mathfrak{p}]$ of rank p^2 if N is even;
- $\eta^{p\star}$ is a K^p level structure, which is something like a K^p orbit of morphisms

$$\eta^{p\star}: V \otimes_{\mathbb{Q}}^{\infty,p} \to \operatorname{Hom}_{F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}}^{\varpi \lambda_0, \lambda^{\star}} \left(H_1^{\acute{e}t}(A_0, \mathbb{A}^{\infty,p}), H_1^{\acute{e}t}(A, \mathbb{A}^{\infty,p}) \right).$$

Remark 2.3.2. The level structure at \mathfrak{p} of this 'Shimura variety' really corresponds to a lattice $\Lambda \subset V \otimes_F F_{\mathfrak{p}}$ such that

$$p\Lambda \subset \Lambda^{\vee}$$

of index 0 (if N is odd) or index p^2 if N is even [this is what comes out of the Vollaard-Wedhorn construction], hence why we take level structures with respect to $\varpi \lambda_0$.

Proposition 2.3.3. The morphism $\mathbf{S}_{\mathfrak{p}} \to \mathbf{T}_{\mathfrak{p}}$ is represented by finite étale schemes.

Definition 2.3.4. We define $\mathbf{B}_{\mathfrak{p}} = \mathbf{B}_{\mathfrak{p}}(V, K^p)$ to be the moduli functor whose S points $\mathbf{S}_{\mathfrak{p}}(S)$ is the set of equivalence classes of tuples

$$(A_0, \lambda_0, \eta_0^p; A, \lambda, \eta^p; A^{\star}, \lambda^{\star}, \eta^{p\star}; \alpha),$$

where

- $(A_0, \lambda_0, \eta_0^p; A, \lambda, \eta^p) \in \mathbf{M}_{\mathfrak{p}}(S)$
- $(A_0, \lambda_0, \eta_0^p; A^{\star}, \lambda^{\star}, \eta^{p_{\star}}) \in \mathbf{S}_{\mathfrak{p}}(S).$
- $\alpha: A \to A^*$ is an \mathcal{O}_F -linear quasi-isogeny such that
 - $\ker \alpha[p^{\infty}] \subset A[\mathfrak{p}]$
 - $\ \varpi \lambda = \alpha^{\vee} \circ \lambda^{\star} \circ \alpha$
 - $-\alpha$ preserves K^p level structures

Remark 2.3.5. There is an obvious correspondence as in (1) by the first two conditions. Note that the condition $\varpi \lambda = \alpha^{\vee} \circ \lambda^{\star} \circ \alpha$ implies that $\ker \alpha[p^{\infty}] \subset A[\mathfrak{p}]$ is an isotropic subspace for the Weil pairing that satisfies

$$\operatorname{rk}\left(\ker\alpha[p^{\infty}]\right)^{\perp}/(\ker\alpha[p^{\infty}])\right)\simeq\left\{\begin{array}{ll}0&\text{if }N\text{ odd}\\p^{2}&\text{if }N\text{ even}\end{array}\right.$$

2.3.6 Linear algebraic description of the fibers

The idea is now that the fiber \mathbf{B}_{s^*} of $\mathbf{B}_{\mathfrak{p}} \to \mathbf{S}_{\mathfrak{p}}$ over a point $s^* = (A^*, \lambda^*) \in \mathbf{S}_{\mathfrak{p}}(k)$ should have a linear algebraic description. For this we consider

$$\mathcal{V}_{s^*} := H_1^{\mathrm{dR}} (A^*/k)_{\tau_{\infty}}$$

which we equip with the pairing

$$\{\ ,\ \}_{s^{\star}}: \mathcal{V}_{s^{\star}} \times \mathcal{V}_{s^{\star}} \to k$$

defined by $\{ , \}_{s^*}(x,y) = \langle Fx, y \rangle_{\lambda^*}$ where

$$F: H_1^{\mathrm{dR}}(A^*/k)_{\tau_{\infty}} \to H_1^{\mathrm{dR}}(A^*/k)_{\tau_{\infty}^{\mathrm{c}}}$$

and where $\langle , \rangle_{\lambda^*}$ is the pairing

$$H_1^{\mathrm{dR}}(A^*/k)_{\tau^c_\infty} \times H_1^{\mathrm{dR}}(A^*/k)_{\tau_\infty} \to k$$

induced by λ^* . Given (A, λ) and an isogeny

$$\alpha:A\to A^*$$

with dual isogeny $\beta: A^* \to A$ satisfying $\beta \circ \alpha = \varpi$, we consider the subspace

$$H = \beta_{*,\tau_{\infty}}^{-1} \left(\omega_{A^{\vee},\tau_{\infty}} \right) \subset H_1^{\mathrm{dR}} (A^{\star})_{\tau_{\infty}},$$

where

$$\beta_{*,\tau}: H_1^{\mathrm{dR}}(A^{\star})_{\tau_{\infty}} \to H_1^{\mathrm{dR}}(A)_{\tau_{\infty}}$$

is the induced map on de-Rham homology. The main idea of everything that will happen next, is that the subspace H will uniquely determine β and therefore α . Therefore, the fiber \mathbf{B}_{s^*} will be contained in some sort of flag variety, and so we need to determine its image.

Lemma 2.3.7. The subspace $H \subset \mathcal{V}_{s^*}$ satisfies

$$H^{\perp} \subset H$$
.

where H^{\perp} is the right-orthogonal complement of H under $\{\ ,\ \}_{s^{\star}}$. Moreover H has rank $\lceil \frac{N+1}{2} \rceil$.

Proof. Omitted, the proof in [2] is derived from Lemma 3.4.13 of op.cit. which mostly uses Dieudonné theory. \Box

Proposition 2.3.8 (Proposition A.1.3 of [2]). There is a smooth projective geometrically connected scheme DL_{s^*}/k of dimension $\lfloor \frac{N-1}{2} \rfloor$ such that $DL_{s^*}(S)$ parametrises rank $\lceil \frac{N+1}{2} \rceil$ sub-bundles $H \subset \mathcal{V}_{s^*} \otimes_k \mathcal{O}_S$ such that $H^{\perp} \subset H$. Its tangent bundle is given by

$$\operatorname{Hom}(\mathcal{H}/\mathcal{H}^{\perp}, \mathcal{V}_{DL_{s^{\star}}}/\mathcal{H}).$$

Proof. The argument for representability is standard and shows that our variety is a closed subscheme of some Grassmannian, hence projective. If $R \to R_0$ is a surjection of artinian local rings with kernel I satisfying $I^2 = 0$ and $H_0 \in DL_{s^*}(R_0)$ then we can a lift $H \in DL_{s^*}(R)$ as follows:

- We first lift H_0 to an arbitrary subspace $H' \subset \mathcal{V}_R$ using smoothness of Grassmannians.
- We then note that since $I^p = 0$, the orthogonal complement $K = H'^{\perp}$ does not depend on the choice of lift of H' (because H'^{\perp} depends only on $H'^{(p)}$ which does not depend on the choice of H');

• We are now free to choose a lift H of H_0 such that $K \subset H$, by the smoothness of $\mathbb{P}(\mathcal{V}/H^{\perp})$.

As a corollary we get the description of the tangent bundle from the theorem

Theorem 2.3.9 (Theorem 4.2.5 of [2]). The fibers B_{s^*} of $\mathbf{B}_{\mathfrak{p}} \to \mathbf{S}_{\mathfrak{p}}$ are isomorphic to DL_{s^*} with morphism described on k points as above. The morphism $B_{s^*} \to \mathbf{B}_{\mathfrak{p}} \to \mathbf{M}_{\mathfrak{p}}$ is a closed immersion of pure codimension $\lfloor \frac{N}{2} \rfloor$ when K^p is sufficiently small with normal bundle

$$\operatorname{Hom}(\omega_{A^{\vee},\tau_{\infty}},\operatorname{im}_{\alpha_{*,\tau_{\infty}}}).$$

Remark 2.3.10. It should follow as in [3] that the the map $\mathbf{B}_{\mathfrak{p}} \to \mathbf{M}_{\mathfrak{p}}$ surjects onto the basic locus, but as far as I can tell this is never made explicit in [2]. [The fact that the map lands in the basic locus follows from the signature condition on $\mathbf{S}_{\mathfrak{p}}$.]

2.4 Uniformisation data

We are now going to relate S_p , to a Shimura set for a definite inner form I of U(V).

Definition 2.4.1. A definite uniformisation datum for V at \mathfrak{p} is a collection V^* , i, $\{\lambda_{\mathfrak{q}^*\}_{\mathfrak{q}\mid n}}\}$ where

- V^* is a standard definite hermitian space over F of rank N;
- $i: V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p} \to V^* \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}$ is an isometry;
- for every prime $\mathfrak{p} \neq \mathfrak{q}$ of F^+ above p, a self dual lattice $\Lambda_{\mathfrak{q}}^{\star}$;
- A lattice $\Lambda_{\mathfrak{p}}^{\star}$ such that

$$p\Lambda_{\mathfrak{p}}^{\star}\subset (\Lambda_{\mathfrak{p}}^{\star})^{\vee}$$

of index 0 when N is odd and of index p^2 when N is even.

Remark 2.4.2. Such definite uniformisation data should always exist (by some kind of Hasse principle?)

Proposition 2.4.3. There is an isomorphism

$$\mathbf{S}_{\mathfrak{p}}(\overline{\mathbb{F}}_p) \simeq \mathrm{Sh}(V^{\star}, K_p^{\star}) \times \mathbf{T}_{\mathfrak{p}}(\overline{\mathbb{F}}_p).$$

2.5 Tate cycles

Suppose that n = 2r + 1 is odd, then we consider the natural maps

$$\mathrm{inc}_{!}^{\star}: \mathbb{Q}_{\ell}[\mathrm{Sh}(V^{\star}, K_{p}^{\star})] \simeq H_{\mathfrak{T}}^{0}(\mathbf{S}_{\mathfrak{p}}, \mathbb{Q}_{\ell}) \simeq H_{\mathfrak{T}}^{0}(\mathbf{B}_{\mathfrak{p}}, \mathbb{Q}_{\ell}) \to H_{\mathfrak{T}}^{2r}(\mathbf{M}_{\mathfrak{p}}, \mathbb{Q}_{\ell}(r))$$
$$\mathrm{inc}_{\star}^{\star}: H_{\mathfrak{T}}^{2r}(\mathbf{M}_{\mathfrak{p}}, \mathbb{Q}_{\ell}(r)) \to H_{\mathfrak{T}}^{2r}(\mathbf{B}_{\mathfrak{p}}, \mathbb{Q}_{\ell}(r)) \simeq H_{\Sigma}^{0}(\mathbf{S}_{\mathfrak{p}}, \mathbb{Q}_{\ell}(r))) \simeq \mathbb{Q}_{\ell}[\mathrm{Sh}(V^{\star}, K_{p}^{\star})]$$

Theorem 2.5.1 (Theorem 4.3.10 of [2]). Suppose that N = 2r + 1 is odd. Then the composition

$$\operatorname{inc}_{\star}^{*} \circ \operatorname{inc}_{!}^{\star}$$

is equal to the Hecke operator

$$\mathbf{T}_{N,\mathfrak{p}}^{\star} = \sum_{\delta=0}^{r} \mathbf{d}_{r-\delta,p} \cdot \mathbf{T}_{N,\mathfrak{p},\delta}.$$

Here $\mathbf{T}_{N,\mathfrak{p},\delta}$ are certain 'standard Hecke operators' defined in appendix B and $\mathbf{d}_{r-\delta,p}$ are integers defined in Section 1.3 (they are basically polynomials in p).

Proof. The paper [2] cites Theorem 9.3.5 of [4], which does not exist (as of 10-2-2020). However, it seems that that it does follow from Section 7.4 of [4], which is the computation of the intersection matrix of cycle classes of the basic locus, and the combinatorics in appendix B of [2]. Unfortunately, some of the proofs in Appendix B also refer to Section 9 of [4].

3 Functoriality and special morphisms

The reason (I think) that we are considering such 'weird' moduli problems, is because there is a natural map (which wouldn't be there if we just considered the usual PEL type unitary Shimura varieties)

$$\mathbf{m}_{\uparrow}: \mathbf{M}_{\mathfrak{p}}(V_n) \to \mathbf{M}_{\mathfrak{p}}(V_{n+1})(A_0, \lambda_0, \eta_0^p; A, \lambda, \eta^p) \to (A_0, \lambda_0, \eta_0^p; A \times A_0, \lambda \times \lambda_0, \eta^p \oplus 1),$$

where now V_n , V_{n+1} are standard indefinite hermitian spaces of rank n, n+1 respectively. We are going to show that all constructions of the previous section are compatible with this, constructing a commutative diagram:

$$\mathbf{S}_{\mathfrak{p}}(V_{n+1}) \longleftarrow \mathbf{B}_{\mathfrak{p}}(V_{n+1}) \longrightarrow \mathbf{M}_{\mathfrak{p}}(V_{n+1})$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\mathbf{S}_{\mathfrak{p}}(V_{n})_{\mathrm{sp}} \longleftarrow \mathbf{B}_{\mathfrak{p}}(V_{n})_{\mathrm{sp}} \qquad \qquad \mathbf{m}_{\uparrow}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbf{S}_{\mathfrak{p}}(V_{n}) \longleftarrow \mathbf{B}_{\mathfrak{p}}(V_{n}) \longrightarrow \mathbf{M}_{\mathfrak{p}}(V_{n})$$

$$(2)$$

Definition 3.0.1. We define $\mathbf{S}_{\mathfrak{p}}(V_n)_{sp} = \mathbf{S}_{\mathfrak{p}}(V_n, K^p)_{sp}$ to be the functor whose S points is the set of of equivalence classes of tuples

$$(A_0,\lambda_0,\eta_0^p;A^\star,\lambda^\star,\eta^{p\star};A^\star_{\natural},\lambda^\star_{\natural},\eta^{p\star}_{\natural};\delta^\star),$$

where

- $(A_0, \lambda_0, \eta_0^p; A^{\star}, \lambda^{\star}, \eta^{p\star}) \in \mathbf{S}_{\mathfrak{p}}(V_n)(S);$
- $(A_0, \lambda_0, \eta_0^p; A_{\mathfrak{h}}^{\star}, \lambda_{\mathfrak{h}}^{\star}, \eta_{\mathfrak{h}}^{p\star}) \in \mathbf{S}_{\mathfrak{p}}(V_{n+1})(S);$
- $\delta^*: A^* \times A_0 \to A_{\mathfrak{h}}^*$ is an \mathcal{O}_F -linear quasi p-isogeny such that
 - 1. $\ker \delta^{\star}[p^{\infty}] \subset (A^{\star} \times A[\mathfrak{p}]);$
 - 2. $\lambda^* \times \varpi \lambda_0 = \delta^{*\vee} \circ \lambda_{\natural}^* \circ \delta^*;$
 - 3. δ^* is compatible with the K^p level structures.

Lemma 3.0.2. The forgetful map

$$\mathbf{S}_{\mathfrak{p}}(V_n)_{sp} \to \mathbf{S}_{\mathfrak{p}}(V_{n+1})$$

is an isomorphism when n is odd and finite etale of degree p+1 when n is even.

Definition 3.0.3. We now define $\mathbf{B}_{\mathfrak{p}}(V_n)_{sp}$ by the following Cartesian diagram:

$$\mathbf{B}_{\mathfrak{p}}(V_n)_{sp} \longrightarrow \mathbf{S}_{\mathfrak{p}}(V_n)_{sp}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbf{B}_{\mathfrak{p}}(V_n) \longrightarrow \mathbf{S}_{\mathfrak{p}}(V_n).$$

One can now check that there is indeed a morphism $\mathbf{B}_{\mathfrak{p}}(V_n)_{\mathrm{sp}} \to \mathbf{B}_{\mathfrak{p}}(V_{n+1})$ making (2) commute.

References

- [1] David Helm, Yichao Tian, and Liang Xiao, *Tate cycles on some unitary Shimura varieties mod*, Algebra Number Theory 11 (2017), no. 10, 2213–2288. MR3744356
- [2] Yifeng Liu, Yichao Tian, Liang Xiao, Wei Zhang, and Xinwen Zhu, On the Beilinson-Bloch-Kato conjecture for Rankin-Selberg motives, arXiv e-prints (2019Dec), arXiv:1912.11942, available at 1912.11942.
- [3] Inken Vollaard and Torsten Wedhorn, The supersingular locus of the Shimura variety of GU(1, n 1) II, Invent. Math. 184 (2011), no. 3, 591–627. MR2800696
- [4] Liang Xiao and Xinwen Zhu, Cycles on Shimura varieties via geometric Satake, arXiv e-prints (2017Jul), arXiv:1707.05700, available at 1707.05700.